A novel hybrid module of skin detector using grouping histogram technique for Bayesian method and segment adjacent-nested technique for neural network

نویسندگان

  • A. A. Zaidan
  • H. Abdul Karim
  • N. N. Ahmad
  • Gazi Mahabubul Alam
  • B. B. Zaidan
چکیده

Skin detection is a common ancient image processing applications for detecting human images. The applications include video surveillance, naked image filters within unit-spam systems and face detection. Skin color is considered as a useful and discriminating spatial feature for many skin detection related applications, but it is not robust enough to deal with complex image environments. Skin tone ranges from dark (some Africans) to light white (Caucasians and some Europeans). Other factors like light-changing conditions and the presence of objects with skin-like colors could create major difficulties in face pixel-based skin detector when color feature is used. Thus, this paper proposed a novel hybrid module using grouping histogram technique for Bayesian method and back propagation neural network with segment adjacent-nested (SAN) technique based on YCbCr and RGB color space in improving the skin detection performance. The researcher was able to increase the classification reliability in discriminating human skin color and regularizing the skin detection that is exposed to different light conditions. This novel skin detector method depends on three factors. The first part of the method involves the Bayesian part that is applied to a novel grouping histogram technique which uses 600 non-skin images in the processing and then calculates the probability density for each pixel. The second part involves applying the adjacent-nested technique in the preprocessing and calculating the probability density for each pixel in the neural part. Then a combination of the neural part and normalization technique is used to normalize the inputs and targets, so that the target falls in the interval [-1, 1] for each segment, which is created and trained with the training set of the skin and non skin segments. The third part involves a combination of the Bayesian method with the neural network segmentation methods and novel hybrid method. The study, tested on human images, has an upright frontal skin with any background. As such, the results show that the proposed system is able to achieve high detection rates of 98% segmentation and low false positives when compared with the existing methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image skin segmentation based on multi-agent learning Bayesian and neural network

Skin colour is considered to be a useful and discriminating spatial feature for many skin detection-related applications, but it is not sufficiently robust to address complex image environments because of light-changing conditions, skin-like colours and reflective glass or water. These factors can create major difficulties in face pixel-based skin detectors when the colour feature is used. Thus...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

Model for Thermal Conductivity of Nanofluids Using a General Hybrid GMDH Neural Network Technique

In this study, a model for estimating the NFs thermal conductivity by using a GMDH-PNN has been investigated. NFs thermal conductivity was modeled as a function of the nanoparticle size, temperature, nanoparticle volume fraction and the thermal conductivity of the base fluid and nanoparticles. For this purpose, the developed network contains 8 layers with 2 inputs in each layer and also tra...

متن کامل

A Hybrid Switching Technique for Single-Phase AC-Module PV System to Reduce Power Losses and Minimize THD

This paper proposes a hybrid switching technique for a domestic PV system with AC-module architecture. In this PV system, independent control of PV modules, which are directly connected to DC terminals of a single-phase cascaded multilevel inverter, makes module-level MPPT possible to extract maximum available solar energy, especially in partial shading conditions. As one of the main contributi...

متن کامل

An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling

With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011